iT邦幫忙

2018 iT 邦幫忙鐵人賽
DAY 25
0

使用資料連結在這,smo使用機器學習課堂上助教所提供的matlab檔案,因為使用matlab的函數,所以這邊需要安裝matlab,並且安裝matlab engine for python。

使用兩種不同的kernel觀察結果

  • liner kernel
  • polynomial kernel of degree 2

import numpy as np
from numpy.linalg import inv, eig
import matplotlib.pyplot as plt
import matlab
import matlab.engine

#data preprocessing
data = []
name = {'VERSICOL':0 , 'SETOSA':1, 'VIRGINIC':2}
with open("Iris_data.csv", 'r') as infile:
    for line in infile:
        line =  line.split('\n')[0].split(',')
        line[-1] = name[line[-1]]
        data += [line]
data = np.asarray(data, dtype = float)

class svm:
    def __init__(self, kernel = 0):
        self.sv = []
        self.w_and_b = -1
        self.kernel = kernel
        if self.kernel >= 2 or self.kernel < 0:
            print 'must be 0 or 1'
            raise ValueError
        self.eng = matlab.engine.start_matlab()

    def phi(self, x):
        if self.kernel == 0: #linear
            return np.asarray(x).reshape(2,1)
        else: #poly homo degree of 2
            return np.array([x[0]**2, np.sqrt(2)*x[0]*x[1], x[1]**2]).reshape(3,1)

    def compute_kernel(self, data):
        n = len(data)
        out = np.zeros((n,n))
        for i in range(n):
            for j in range(n):
                out[i][j] = self.phi(data[i]).T.dot(self.phi(data[j]))
        return out

    def fit_each(self, data, y, c , threshold): #y is target and it must be 1 / -1
        n = len(data)
        k = self.compute_kernel(data)
        ## pass value to matlab
        k_mat = matlab.double(k.tolist())
        y_mat = matlab.double(y.tolist())
        y = y[0]

        ##get coefficient
        alpha = np.asarray(self.eng.smo(k_mat ,y_mat ,c ,threshold)[0]).reshape(n)
        C = c/n
        ## compute bias
        Nm = 0 #num of certain support vector (0 < value < C)
        bias = 0.
        for i in range(n):
            if alpha[i] == 0. or alpha[i] == C:
                continue
            Nm += 1
            tmp = 0.
            for j in range(n): #for each support vector( value > 0)
                if alpha[j] == 0.:
                    continue
                tmp += alpha[j] * y[j] * k[i][j]
                self.sv += [data[j]]
            bias += (y[i] - tmp)
        bias /= Nm

        ## compute w
        w = np.zeros((self.phi(data[0]).shape[0],1))
        for i in range(n):
            w += alpha[i] * y[i] * self.phi(data[i])
        return w, bias

    def fit(self, data, target, c, threshold):
        k = int(np.amax(target)) + 1 #num of classes
        self.num_of_class = k
        w_and_b = []
        for s in range(k):
            for t in range(k):
                if s < t or s == t:
                    continue
                tmp_data = []
                tmp_target = []
                for n in range(len(data)):
                    if target[n] == s:
                        tmp_data += [data[n]]
                        tmp_target += [1]
                    elif target[n] == t:
                        tmp_data += [data[n]]
                        tmp_target += [-1]
                    else:
                        continue
                tmp_target = np.asarray(tmp_target).reshape(1,len(tmp_target))
                tmp_data = np.asarray(tmp_data)
                w, b = self.fit_each(tmp_data, tmp_target, c, threshold)
                w_and_b += [[w,b,s,t]]
        self.w_and_b = w_and_b

    def predict(self, x):
        if self.w_and_b == -1:
                raise NameError('must fit dataset first')
        vote = [0] * self.num_of_class
        for each in range(len(self.w_and_b)):
            p = self.w_and_b[each][0].T.dot(self.phi(x)) + self.w_and_b[each][1]
            if p >= 0:
                vote[self.w_and_b[each][2]] += 1
            else:
                vote[self.w_and_b[each][3]] += 1
        return vote.index(max(vote))

    def batch_predict(self, xx, yy):
        if self.w_and_b == -1:
            raise NameError('must fit dataset first')
        out = np.zeros(xx.shape, dtype = int)
        for r in range(xx.shape[0]):
            for c in range(xx.shape[1]):
                out[r][c] = self.predict([ xx[r][c], yy[r][c] ])
        return out

    def plot(self, train, target, c, threshold, name):
        self.fit(train, target, c, threshold)

        step = 0.01
        x_min, x_max = train[:, 0].min() - 1, train[:, 0].max() + 1
        y_min, y_max = train[:, 1].min() - 1, train[:, 1].max() + 1
        xx, yy = np.meshgrid(np.arange(x_min, x_max, step), np.arange(y_min, y_max, step))
        dist = self.batch_predict(xx,yy)
        color = ['red', 'blue' ,'limegreen']
        sv = (np.asarray(self.sv))

        plt.figure()
        plt.contourf(xx, yy, dist, alpha=0.3, levels=np.arange(dist.max()+2)-0.5, antialiased=True, colors = color)
        plt.scatter(sv[:,0], sv[:,1], color = 'black', marker = 'o')

        ax = []
        bx = []
        cx = []
        v = [ax, bx, cx]
        for i in range(len(train)):
            p = self.predict(train[i])
            v[p] += [train[i]]
        ax = np.asarray(ax)
        bx = np.asarray(bx)
        cx = np.asarray(cx)
        plt.scatter(ax[:,0], ax[:,1], color = 'red', marker = '+')
        plt.scatter(bx[:,0], bx[:,1], color = 'blue', marker = 'x')
        plt.scatter(cx[:,0], cx[:,1], color = 'limegreen', marker = '*')
        plt.savefig('%s_%d.png'%(name,self.kernel))

target = data[:,-1]
train = data[:,:2]

for i in range(2):
    t = svm(i)
    t.plot(train ,target, 5., 0., "result")
    error = 0
    for n in range(len(train)):
        if t.predict(train[n]) != target[n]:
            error += 1
    print 'error:', error

會得到下圖(較黑的點為support vector),以及錯誤數量
liner kernel 為 32 個分類錯誤
polynomina kernel 為 27 個分類錯誤

而若我們把資料四個維度一起考慮,利用LDA方式降低至兩個維度,並且再做一次SVM可以得到下面的結果
liner kernel 為 27 個分類錯誤
polynomina kernel 為 6 個分類錯誤

作圖會是


上一篇
SVM - Regression
下一篇
EM - 前言 與 Kmeans
系列文
機器學習你也可以 - 文組帶你手把手實做機器學習聖經30
圖片
  直播研討會
圖片
{{ item.channelVendor }} {{ item.webinarstarted }} |
{{ formatDate(item.duration) }}
直播中

尚未有邦友留言

立即登入留言